Mass Spectrometric Analysis of l-Cysteine Metabolism: Physiological Role and Fate of l-Cysteine in the Enteric Protozoan Parasite Entamoeba histolytica
نویسندگان
چکیده
UNLABELLED L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. IMPORTANCE Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly oxygenated tissues in the intestine and the liver. It is well known that E. histolytica needs a comparatively high concentration of L-cysteine for its axenic cultivation. However, the reason for and the metabolic fate of L-cysteine in this parasite are not well understood. Here, using a metabolomic and stable-isotope-labeled approach, we investigated the metabolic fate of this amino acid in these parasites. We found that L-cysteine inside the cell rapidly reacts with aldehydes to form 2-(R)-thiazolidine-4-carboxylic acid. We showed that these 2-(R)-thiazolidine-4-carboxylic derivatives serve as an L-cysteine source, promote growth, and protect cells against oxidative stress by scavenging aldehydes and reducing the ROS level. Our findings represent the first demonstration of 2-(R)-thiazolidine-4-carboxylic acids and their roles in protozoan parasites.
منابع مشابه
Metabolome analysis revealed increase in S-methylcysteine and phosphatidylisopropanolamine synthesis upon L-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica.
L-cysteine is ubiquitous in all living organisms and is involved in a variety of functions, including the synthesis of iron-sulfur clusters and glutathione and the regulation of the structure, stability, and catalysis of proteins. In the protozoan parasite Entamoeba histolytica, the causative agent of amebiasis, L-cysteine plays an essential role in proliferation, adherence, and defense against...
متن کاملMolecular and structural characterization of NADPH-dependent d-glycerate dehydrogenase from the enteric parasitic protist Entamoeba histolytica.
Putative NADPH-dependent GDH (L-glycerate dehydrogenase) of the protozoan parasite Entamoeba histolytica (EhGDH) has been characterized. The EhGDH gene encodes a protein of 318 amino acids with a calculated isoelectric point of 6.29 and a molecular mass of 35.8 kDa. EhGDH showed highest identities with GDH from epsilon-proteobacteria. This close kinship was also supported by phylogenetic analys...
متن کاملMicrobes and microbial toxins: paradigms for microbial-mucosal interactions. VI. Entamoeba histolytica: parasite-host interactions.
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition ...
متن کاملResistance of Entamoeba histolytica to the cysteine proteinase inhibitor E64 is associated with secretion of pro-enzymes and reduced pathogenicity.
Cysteine proteinases (CPs) have been considered suitable targets for the development of antiparasitic drugs. To assess the importance of CPs for the growth and pathogenicity of the protozoan parasite Entamoeba histolytica we have cultured amoebae in the presence of various cysteine proteinase inhibitors (CPIs). It was found that broad range CPIs, which are membrane permeable and rapidly enter t...
متن کاملEntamoeba histolytica infection and secreted proteins proteolytically damage enteric neurons.
The enteric protozoan parasite Entamoeba histolytica causes amebic colitis through disruption of the mucus layer, followed by binding to and destruction of epithelial cells. However, it is not known whether ameba infections or ameba components can directly affect the enteric nervous system. Analysis of mucosal innervations in the mouse model of cecal amebiasis showed that axon density was dimin...
متن کامل